







## Outline

- Introduction Leptoquarks
- Leptoquarks at EIC
   Signature

  - Cross section
- Other exotic processes
- Conclusions





2

## Leptoquark (+CLFV)

• SM contains no explanation for the symmetry between quark and lepton sectors. SM does not predict the number of generations.





## Leptoquark (+CLFV)

- SM contains no explanation for the symmetry between quark and lepton sectors. SM does not predict the number of generations.
- Leptoquark is a color triplet boson (appear in many SM extensions)





## Leptoquark (+CLFV)

- SM contains no explanation for the symmetry between quark and lepton sectors. SM does not predict the number of generations.
- Leptoquark is a color triplet boson (appear in many SM extensions)
- LQs model are explored in Buchmüller-Rückl-Wyler (BRW) framework under  $SU(3)\times SU(2)\times U(1)$ : 14 different LQ types (7 scalars, 7 vectors).
- Couple to both leptons and quarks and carry SU(3) color, fractional electric charge, baryon (B) and lepton (L) number

Fermion number F= 3B+L (F= 0, F= 2) is to be conserved



Charged lepton flavor violation (CLFV)

1 generation 
$$\begin{array}{c} eq \longrightarrow LQ \longrightarrow eqX \\ eq \longrightarrow LQ \longrightarrow v_eqX \\ \end{array}$$
 2 generation 
$$\begin{array}{c} eq \longrightarrow LQ \longrightarrow \mu qX \\ eq \longrightarrow LQ \longrightarrow v_\mu qX \\ \end{array}$$
 3 generation 
$$\begin{array}{c} eq \longrightarrow LQ \longrightarrow \tau qX \\ eq \longrightarrow LQ \longrightarrow \tau qX \\ \end{array}$$
 2 definition 
$$\begin{array}{c} eq \longrightarrow LQ \longrightarrow v_\mu qX \\ \end{array}$$
 3 generation 
$$\begin{array}{c} eq \longrightarrow LQ \longrightarrow v_\mu qX \\ \end{array}$$
 3 definition 
$$\begin{array}{c} eq \longrightarrow LQ \longrightarrow v_\mu qX \\ \end{array}$$
 3 definition 
$$\begin{array}{c} eq \longrightarrow LQ \longrightarrow v_\mu qX \\ \end{array}$$
 3 definition 
$$\begin{array}{c} eq \longrightarrow LQ \longrightarrow v_\mu qX \\ \end{array}$$
 3 definition 
$$\begin{array}{c} eq \longrightarrow LQ \longrightarrow v_\mu qX \\ \end{array}$$
 3 definition 
$$\begin{array}{c} eq \longrightarrow LQ \longrightarrow v_\mu qX \\ \end{array}$$

### Charged Lepton Flavor Violation (CLFV)

- With discovery of Neutrino oscillations, we know that lepton flavor is not conserved
- Is it also not conserved for charged leptons?
- At EIC CLFV: eq -> μq or eq -> τq
- Detector requirements:
  - $4\pi$  muon detector
  - $-4\pi$  hadronic calorimeter ( to identify a missing energy from neutrinos)



### Leptoquark limits





- LEP (ee):contact interactions (indirect \_ constrains from e<sup>+</sup>e<sup>-</sup>-> qq)
- LHC/TEVATRON (pp): pair production ( $\lambda$  independent) HERA/EIC (ep): single LQ production M $\sim \sqrt{s}$ , contact interaction M $\gg \sqrt{s}$



leptoquarks range from 248 to 290 GeV

HERA:  $L\sim10^{30-31}$ cm<sup>-2</sup>s<sup>-1</sup> (0.5 fb<sup>-1</sup>) EIC:  $L\sim10^{34}$ cm<sup>-2</sup>s<sup>-1</sup> (>50 fb<sup>-1</sup>)

## Leptoquarks at EIC

| Type               | J | F | Q           | ep dominant process             |                         | Coupling    | Branching ratio $\beta_\ell$ | Туре | J                  | F | Q | ep don    | ninant p                                | rocess        | Coupling        | Branching ratio $\beta_\ell$ |     |
|--------------------|---|---|-------------|---------------------------------|-------------------------|-------------|------------------------------|------|--------------------|---|---|-----------|-----------------------------------------|---------------|-----------------|------------------------------|-----|
| $S_0^L$            | 0 | 2 | -1/3        | 0-017                           | $\rightarrow$ $\left\{$ | $\ell^- u$  | $\lambda_L$                  | 1/2  | $V_0^L$            | 1 | 0 | +2/3      | $e_R^+ d_L  	o$                         |               | $\ell^+ d$      | $\lambda_L$                  | 1/2 |
|                    | U |   |             | $e_L^- u_L$                     |                         | $ u_\ell d$ | $-\lambda_L$                 | 1/2  |                    |   |   |           |                                         |               | $ar{ u}_\ell u$ | $\lambda_L$                  | 1/2 |
| $S_0^R$            | 0 | 2 | -1/3        | $e_R^- u_R$                     | $\rightarrow$           | $\ell^- u$  | $\lambda_R$                  | 1    | $V_0^R$            | 1 | 0 | +2/3      | $e_L^+ d_R$                             | $\rightarrow$ | $\ell^+ d$      | $\lambda_R$                  | 1   |
| $	ilde{S}_0^R$     | 0 | 2 | -4/3        | $e_R^- d_R$                     | $\rightarrow$           | $\ell^- d$  | $\lambda_R$                  | 1    | $	ilde{V}_0^R$     | 1 | 0 | +5/3      | $e_L^+u_R$                              | $\rightarrow$ | $\ell^+ u$      | $\lambda_R$                  | 1   |
| $S_1^L$            |   |   | -1/3 $-4/3$ | $igg  e_L^- u_L \;\; ightarrow$ |                         | $\ell^- u$  | $-\lambda_L$                 | 1/2  | $oxed{V_1^L}$      | 1 | 0 | +2/3 +5/3 | $e_R^+ d_L \rightarrow \left\{ \right.$ | $\ell^+ d$    | $-\lambda_L$    | 1/2                          |     |
|                    | 0 | 2 |             |                                 |                         | $ u_\ell d$ | $-\lambda_L$                 | 1/2  |                    |   |   |           |                                         |               | $ar{ u}_\ell u$ | $\lambda_L$                  | 1/2 |
|                    |   |   |             | $e_L^- d_L$                     | $\rightarrow$           | $\ell^- d$  | $-\sqrt{2}\lambda_L$         | 1    |                    |   |   |           | $e_R^+u_L$                              | $\rightarrow$ | $\ell^+ u$      | $\sqrt{2}\lambda_L$          | 1   |
| $V_{1/2}^L$        | 1 | 2 | -4/3        | $e_L^- d_R$                     | $\rightarrow$           | $\ell^- d$  | $\lambda_L$                  | 1    | $S_{1/2}^L$        | 0 | 0 | +5/3      | $e_R^+u_R$                              | $\rightarrow$ | $\ell^+ u$      | $\lambda_L$                  | 1   |
| $V_{1/2}^R$        | 1 | 2 | -1/3        | $e_R^- u_L$                     | $\rightarrow$           | $\ell^- u$  | $\lambda_R$                  | 1    | $S_{1/2}^R$        | 0 | 0 | +2/3      | $e_L^+ d_L$                             | $\rightarrow$ | $\ell^+ d$      | $-\lambda_R$                 | 1   |
|                    | 1 |   | -4/3        | $e_R^- d_L$                     | $\rightarrow$           | $\ell^- d$  | $\lambda_R$                  | 1    |                    | U | U | +5/3      | $e_L^+u_L$                              | $\rightarrow$ | $\ell^+ u$      | $\lambda_R$                  | 1   |
| $	ilde{V}_{1/2}^L$ | 1 | 2 | -1/3        | $e_L^-u_R$                      | $\rightarrow$           | $\ell^- u$  | $\lambda_L$                  | 1    | $	ilde{S}_{1/2}^L$ | 0 | 0 | +2/3      | $e_R^+ d_R$                             | $\rightarrow$ | $\ell^+ d$      | $\lambda_L$                  | 1   |

High luminosity (~100-1000 higher then HERA)

HERA: L~ $10^{30-31}$ cm $^{-2}$ s $^{-1}$  (0.5 fb $^{-1}$ )

EIC: L~10<sup>34</sup>cm<sup>-2</sup>s<sup>-1</sup> (>50 fb<sup>-1</sup>)

- Electron and positron beam will probe different types of Leptoquarks
  - -electron-proton collisions, mainly F=2 LQs prodused
  - -positron-proton collisions, mainly F=0 LQs prodused
- eD (deuterium) vs ep collisions
- LQs are chiral particles, gain in sensitivity due to polarised beams



#### Polarisation dependence



# Leptoquarks production DIS at EIC





## Leptoquark search mass spectra



#### LEPTOQUARKS at EIC





q (p')



e (k)

### Leptoquark signature

• 14 different LQ types (7 scalars, 7 vectors) . All 14 couple to electron and quark (NC-like), and only 4 couple to both eq (NC-like) and vq (CC -like)



## Leptoquark



**Angular spectrum** 

- Scalar LQ (s-channel) or Vector (u-channel) – decay isotropically
   => cosθ\* or y dependence is flat
- Vector LQ (s-channel) or Scalar LQ (u-channel) – (1-y)<sup>2</sup> dependence.
- DIS background: 1/y²

nas Jefferson National Accelerator Facility

Artificial Neural Network



EIC: e- 10 GeV, p 100GeV,  $\lambda$ =0.3



Julia Furletova

### LQ cross section at EIC

LQgenEP Monte Carlo A=0.3 ep=10,100 GeV

| LQ type                              | Process<br>1-st gen.                                                                             | BR                | σ(nb) for<br>M <sub>LQ</sub> =50GeV | $\sigma(fb)$ for $M_{LQ}=150GeV$ |
|--------------------------------------|--------------------------------------------------------------------------------------------------|-------------------|-------------------------------------|----------------------------------|
| <b>5</b> <sup>L</sup> <sub>0</sub>   | e <sup>-</sup> u->e <sup>-</sup> u<br>e <sup>-</sup> u->vd                                       | 50%<br>50%        | 0.29                                | 21.0                             |
| <b>5</b> <sup>R</sup> <sub>0</sub>   | e <sup>-</sup> u->e <sup>-</sup> u                                                               | 100%              | 0.56                                | 21.5                             |
| <b>5</b> <sup>R</sup> <sub>0</sub>   | e <sup>-</sup> d->e <sup>-</sup> d                                                               | 100%              | 0.09                                | 8.0                              |
| <b>5</b> <sup>L</sup> <sub>1</sub>   | e <sup>-</sup> d->e <sup>-</sup> d<br>e <sup>-</sup> u->vd<br>e <sup>-</sup> u->e <sup>-</sup> u | 50%<br>25%<br>25% | 0.49                                | 54.2                             |
| <b>V</b> <sup>L</sup> <sub>1/2</sub> | e <sup>-</sup> d->e <sup>-</sup> d                                                               | 100%              | 0.18                                | 15.3                             |
| <b>V</b> <sup>R</sup> <sub>1/2</sub> | e <sup>-</sup> d->e <sup>-</sup> d<br>e <sup>-</sup> u->e <sup>-</sup> u                         | 13%<br>87%        | 1.32                                | 45.8                             |
| <b>Ŋ</b> <sup>L</sup> 1/2            | e <sup>-</sup> u->e <sup>-</sup> u                                                               | 100%              | 1.13                                | 31.1                             |





## Leptoquark

 $M_{LQ} = 30 \text{GeV}$ 



M<sub>LQ</sub>=50GeV

Typical HERA selection cuts:
• x>0.1

- Q<sup>2</sup>> 2500 GeV<sup>2</sup>





log(Q2)

Х

## Leptoquarks with $M_{LQ} > \int s$

$$\frac{d^{2}\sigma}{dxdQ^{2}} = \frac{d^{2}\sigma_{SM}}{dxdQ^{2}} + \frac{d^{2}\sigma_{s/SM}^{Int}}{dxdQ^{2}} + \frac{d^{2}\sigma_{u/SM}^{Int}}{dxdQ^{2}} + \frac{d^{2}\sigma_{s}^{Int}}{dxdQ^{2}} + \frac{d^{2}\sigma_{s}}{dxdQ^{2}} + \frac{d^{2}\sigma_{s}}{dxdQ^{2}}$$





#### LEPTOQUARKS at EIC







## LQ and DIS Parity

#### 

DIS-Parity will provide complementary information to direct search and will significantly extend the limit on the existence of leptoquarks beyond the currently set in direct searches

#### New Physics Can Modify e-q Coupling





DIS-Parity could put limit M<sub>LO</sub>>2.4 TeV



## Running of $sin^2(\theta_w)$ with $Q^2$

Measurements of a weak mixing angle



• Deviation from the "curve" may be hints of BSM scenarios including: Lepto-Quarks, RPV SUSY extensions,  $E_6/Z'$  based extensions of the SM



## Flavor changing neutral current (FCNC)

• Search for rare or SM- forbidden decays of a charmed mesons

Br(D+ -> 
$$\pi$$
+ $\mu$ + $\mu$ -) < 3.9× 10 <sup>-6</sup>

• Search for a scalar leptoquark coupling in the D+ ->  $\pi$ + I<sup>+</sup> I decay or D ->  $\mu$ + $\mu$ -





### Resonant production of Leptogluons



- -Leptogluons are color-octet states.
- -Carrying lepton number and couple to gluons

Color octet charged leptons e8:  $m_8>86$  GeV[CDF: Abe, PRL 63, 1447] HERA: excluded scale region  $\Lambda<1.8$  TeV for  $m_8\sim100$ GeV New bound on e8 mass:  $m_8>1.2$ TeV [Goncalves-Netto et al., 2013]

#### Signature:

Electron and gluon jet (different jet fragmentation compared to a leptoquark)

LHC: muonic leptogluon  $\mu_8$  t-channel exchange (di-muon channel)  $\sigma(pp->\mu\mu) \sim 1fb$ 





LHC:  $m_g > 1.5 TeV$  for  $\sqrt{s} = 8 TeV$  and  $\Lambda = 3.4 TeV$ 

arXiv:1511.05814 Y. C. Acar "Leptogluons for FCC"

"Collider Searches for Leptogluons "
-D. Zhuridov.



### SUSY search

- R-parity:  $Rp = (-1)^{L+3B+2S}$ ( Rp = +1 for SM particles, -1 for SUSY particles)
- If RPV: single resonant squark production possible in ep collisions



fferson National Accelerator Facility

#### Squark production





Lepton+jet: Leptoquark searches

### Gaugino Search



Gravitino search





Julia Furletova

### General search for New Phenomena



- Model independent generic search for final states with ≥ 2 objects (e, μ, jet, γ, ν)
- Look for possible deviations from SM in total event number and in  $\Sigma p_{_T}$  and Mass distributions

## Multi leptons and isolated leptons with missing $P_{\scriptscriptstyle T}$

SM process with isolated lepton and  $P_{\scriptscriptstyle T}^{\scriptscriptstyle miss}$ 

Anomalous triple gauge WWy couplings



**Multi-leptons in γγ process**: look for deviation from SM - resonances



Resonance production, e.g. Doubly-charged Higgs bosons  $(H^{\pm\pm})$ 

H±± decays into ee, еµ and eт pairs

**HERA** limit:

In ee channel  $H^{\pm\pm}$  <138 GeV are excluded for a coupling  $h_{ee} = 0.3$ . In the  $e\mu$  channel masses below 141 GeV are excluded for a coupling 0.3

In the  $e\tau$  channel masses below 112 GeV are excluded for a coupling 0.3





### Excited Fermions • Production via t-channel $\gamma(Z^0)$ , W exchange







nas Jefferson National Accelerator Facility

- Lepton de-excitation by emission of γ
  Observation would be direct evidence for
- compositeness
- Compositeness could explain the three lepton/quark families and their mass hierarchy









## Pentaquarks at EIC

(talk by Justin Stevens)

- QCD: only colorless states can exist as free particles: qq (mesons), qqq (barions)
- Other colorless combinations (QCD) not forbidden:
- qqqq (tetraquarks),qqqqq (pentaquarks)
- O<sup>+</sup>[uudds] (1.53GeV) → K<sup>+</sup>n (LEPS, CLAS, SAPTHIR).
- Evidence for  $\Xi^{-}(ddss\overline{u})$ ,  $\Xi^{0}(udss\overline{u})$  by NA49 (pp  $\sqrt{s}$  =17 GeV)
- Charmed pentaquarks Θ<sup>c</sup> [uuddc/uuddc] w
   D\*p ZEUS vs H1 comparison





Possible search for Pentaquarks in photoproduction

-photoproduction of hidden charm pentaguarks

 $P_{c}^{+}[uc\overline{c}ud](4380)$  and  $P_{c}^{+}(4450)$ 



-Tetraquarks: probe the new XYZ states and heavyquark hybrid mesons

 Low-Q2 electron and neutron

(close to beam pipe) detection

- Excellent e/π separation
- -Potential bottomonium production Zb(10610) and Zb(10650) similar to observed at Belle

Jefferson Lab
Thomas Jefferson National Accelerator Facility

Yulia Furletova 23

### Conclusions

- High luminosity, polarization, possibility to switch to e+, and comparison of data for ep and ed (eA) are essential for Leptoquark searches.
- $4\pi$  detector with perfect calorimetry (EM and HCAL) and with  $4\pi$  muon detectors are beneficial for physics BSM.

"Everything is possible! The impossible just takes a little longer..."



24

## Backup



Julia Furletova 25



Julia Furletova 26